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Abstract-Thermally fully developed and thermally developing laminar flows of a Bingham plastic in a 
circular pipe have been studied analytically. For thermally fully developed flow. the Nusselt numbers and 
temperature profiles are presented in terms of the yield stress and Peclet number, proposing a correlation 
formula between the Nusselt number and the Peclet number. The solution to the Graetz problem has been 
obtained by using the method of separation of variables, where the resulting eigenvalue problem is solved 
approximately by using the method of weighted residuals. The effects of the yield stress, Peclet and 

Brinkman numbers on the Nusselt number are discussed. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The problem of laminar forced convective heat trans- 
fer in pipe flows is of foremost importance to the 
design of practical thermal systems. A large number 
of fluids used extensively in industrial applications 
exhibit yield stresses that must be overcome before 
they start to flow, which are called Bingham plastic. 
Some examples are electrorheological fluids, sus- 
pensions, drilling muds, paints, greases, aqueous 
foams, slurries and food products like margarine, 
mayonnaise and ketchup etc. The motivation of the 
present paper is to better understand the flow and heat 
transfer characteristics of such fluids. 

The first studies of heat transfer in a duct flow of 
Newtonian fluid were made more than a century ago 
by Graetz in 1883-I 885 and independently by Nusselt 
in 1910. Solutions to this problem and its various 
extensions continue to evoke many research efforts 
[l-8] and a comprehensive review of the works on 
heat transfer in laminar duct flow was compiled by 
Shah and London [9]. 

For a laminar Newtonian flow, it is well known that 
the Nusselt number for fully developed flow is 3.6568 
excluding axial conduction. Pahor and Strand [2] 
studied thermally fully developed flow including axial 
conduction for a laminar Newtonian flow by the per- 
turbation method and presented graphically the fully 
developed Nusselt number with respect to the Peclet 
number. Their work was further refined by Ash and 
Heinbockel [5], who considered only the first eigen- 
mode of the eigenvalue problem originated from the 

*Author to whom correspondence should be addressed. 

Graetz problem to obtain the fully developed Nusselt 
number with respect to the Peclet number. 

Kakac et al. [lo] and Kays and Crawford [l l] 
reported that Bhatti [12] obtained a fully developed 
temperature profile for a Newtonian fluid neglecting 
axial conduction and viscous dissipation. However, 
the reported solution is found to involve some errors, 
as will be shown later in the present study. Vradis et 
al. [ 131 reported a fully developed temperature profile 
for a Bingham plastic including viscous dissipation. 
When viscous dissipation is included and axial con- 
duction is excluded under uniform wall temperature 
boundary condition, a fully developed temperature 
profile is obtained asymptotically. To the authors’ 
knowledge, there is no existing solution for thermally 
developed flow of a Bingham plastic in laminar pipe 
flow including axial conduction in the case of neg- 
ligible viscous dissipation. 

Wissler and Schechter [ 141 solved the Graetz prob- 
lem for a Bingham plastic neglecting both axial con- 
duction and viscous dissipation by using the method 
of separation of variables, which led to a Sturm- 
Liouville eigenvalue problem. They numerically 
obtained the first seven eigenvalues and eigen- 
functions for c = 0.0, 0.25, 0.5, 0.75 and 1.0. On the 
other hand, the Leveque solution of a Bingham plastic 
was given by Beek and Eggink [ 151. Later, Blackwell 
[16] indicated that the number of eigenvalues and 
eigenfunctions obtained by Wissler and Schechter 
were inadequate for small values of x+ and extended 
the calculations to include the first 60 eigenvalues for 
c = 0.0, 0.2, 0.4, 0.8 and 1.0. 

Recently, Johnston [17] solved this problem by an 
approximate solution method based on the Sturm- 
Liouville transform theory and extended his solution 
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NOMENCLATURE 

A,, A2 parameters for correlation formula 
(see equation (15)) 

A, B, C matrices 
A,,, B,!, C,, elements of matrices A, B and C 
a,, b, coefficients of infinite power series 
Br Brinkman number, pOUz,/k(T,- TW) 
C,, D,, E,, coefficients used in the solution of 

eigenvalue problem 

C, specific heat at constant pressure 
( dimensionless radius of the plug flow 

region, or ratio of the yield shear stress 
to the wall shear stress, ~~1’5, 

c,, c2 coefficients of the Bessel function 
solution 

c, d eigenvectors 
c,, 4 components of eigenvectors 
D pipe diameter 
h heat transfer coefficient based on bulk 

temperature 
Jo, J, Bessel functions of the first kind of 

orders 0 and 1 
k thermal conductivity 
N number of finite eigenmodes 
NU local Nusselt number, hD/k 
N% asymptotic Nu for thermally fully 

developed flow when Pe + 0 
N%. asymptotic Nu for thermally fully 

developed flow when Pe - cc 
Pe Peclet number, Z(/,,Rja 
Pr Prandtl number, p,,/(pz) 
R pipe radius 

R, eigenfunction 
r dimensionless radial coordinate, y/R 

S, trial function 
.r1, .%r .r3. 34, 35 constants used in thermally 

fully developed flow solutions 
T(_r, Z) temperature 
T, entrance temperature 
T,,,(z) bulk temperature 

.x- 

y,, 

z 

wall temperature 
axial velocity 
average axial velocity 
dimensionless axial velocity, U/U,, 
weight function used in the method of 
weighted residuals 
dimensionless axial coordinate. 
(z/R)iPe 
Bessel function of the second kind of 
order 0 
radial coordinate 
axial coordinate. 

Greek symbols 

;;! 

thermal diffusivity 
first zero of the Bessel function Jo 

V apparent viscosity for a Bingham 
model 

)?eK dimensionless apparent viscosity, q/p0 
O(r, _u+) dimensionless temperature 

(T,\--T)i(T,-T,) 
O,(.r+) dimensionless bulk temperature 

(r,,-T,),‘(Tu-T,) 
0 * (r) dimensionless temperature for 

Xi ‘X 

4, eigenvalue 

,4 plastic viscosity 

P density 
5 shear stress 

r, wall shear stress 

rY yield shear stress 
@ viscous dissipation function 
4(r) dimensionless temperature 

(Tm- T);‘(T,.- I”,,,). 

Subscript 
e entrance 
W wall. 

to the case including only axial conduction. He con- 
cluded that the Peclet number had to be larger than 
1000 in order for axial conduction term to be neglected 
without loss of accuracy. As far as we know, there has 
been no work in the literature that studied the Graetz 
problem for a Bingham plastic pipe flow including 
both axial conduction and viscous dissipation. 

The objectives of the present study are two-fold. 
Firstly, we are to study thermally fully developed flow 
of a Bingham plastic including axial conduction, to 
obtain the Nusselt number and temperature profiles 
and to propose a correlation formula between the 
Nusselt number and the Peclet number (Section 2). 
Secondly, we are to study thermally developing flow 
(the Graetz problem) of a Bingham plastic including 

both axial conduction and viscous dissipation. The 
solution to this problem is obtained by using the 
method of separation of variables, where the resulting 
eigenvalue problem is solved approximately by using 
the method of weighted residuals (Section 3). 

2. THERMALLY FULLY DEVELOPED FLOW 

2.1. Governing equations 
Assuming that the velocity field is fully developed 

and viscous dissipation is negligible, the non-dimen- 
sionalized energy equation for a circular pipe flow can 
be represented as 
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where O(r, x+) = (T- T,,,)/( T, - Tw) is the non-dimen- 
sionalized temperature, r = YIR x+ = (z/R)/Pe, 
Pe = 2U,,R/a is the Peclet number, R is the pipe 
radius, a is the thermal diffusivity, T, is the entrance 
temperature and T, is the wall temperature. 

For constant properties, the fully developed vel- 

(6) 

(7) 

ocity profile for a laminar pipe flow of a Bingham 
plastic is given as follows [ 181 : 

1 
2(1-c)’ 

*-$+f 
Obr<c 

u(r) = (2) 
2(1 -r2 -2cU -r)) 

1-g+; 

c < r < , 
1, 

where r = 0 and r = 1 correspond, respectively, to the 
centerline and the wall, and c is the dimensionless 
radius of the plug-flow region. Thus, c = 1 cor- 
responds to a complete plug flow (U = 1), while c = 0 
corresponds to a laminar Newtonian flow. 

The thermally fully developed condition in laminar 
pipe flow is defined [1 l] by 

(3) 

Equation (7) can be obtained by non-dimen- 
sionalizing the energy conservation relation which is 
expressed for a cross-section of a pipe as 

pC,U,,nR’~ = 2n 
s 

R 8T 
k-_ydy 0 azz 

+h(T,- T,,,)*2nR. (8) 

2.2. Results and discussion 
Given the solution of the velocity field (equation 

(2)), the solution to the problem (5) can be obtained 
in the form of a Bessel function for c = 1, while it can 
be obtained in the form of an infinite power series by 
using the Frobenius’ method for c = 0. For 0 < c < 1, 
the solution may be obtained in a combined form of 
a Bessel function for 0 < r < c and an infinite power 
series for c < r < 1. Hence the solution of equation 
(5) may be expressed as 

which means that the dimensionless temperature ‘(‘) = t a r”+ In(r) * f b r” n n c<r<l 
based on the difference between the wall and bulk a=” n=O 

temperatures is invariant with the axial distance of the 
pipe. By defining a new dimensionless temperature 

@a) 

4(r) =(Tw- T)/(T,-T,,,) = O(r,x+)/O,(x+), s: s2 =-+ 
s, ‘(1 -c)2 

Pe’ 
(9b) 

equation (1) can be rewritten as 

(4) where the recurrence formula for a, and b, are 

where primes denote differentiation in terms of argu- h, = u, = 0 UOa) 

ment. 
In order that a solution may be obtained by the 

method of separation of variables, we set Oh/ 
bz = _ $.I3 ‘b, u* = -$(2.Zh*+.Y, .a,) 

0, = -s,(s, ,O), which assures that Ok/O, = s:. 
Then equation (4) becomes 

(lob) 

with the boundary conditions b,= -~(s,.h,,+s,.h,_,+s,.h,~,) 

W) = 0 (5b) 
a, = --1(2n.h,,+s,.a,,~,+s,.n,,~,+s,.a,,~z) 

f#J’(O) = 0 (5c) rl’ 

and from the definition of 4, the Nusselt number is 
~24 (10d) 

represented as follows : 
and 

-2*@(l) = NM. (5d) 

Integrating equation (5a) over the interval 0 < r < 1, 
we have 

s: S) =,+ 
s, ‘(1-2c) 

Pe- 
I-;,+; 

(1 la) 
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Table I. Parameters (I~~, h,,, C, and Nu, for various values of ( 

(’ au f% (‘I Nli, 
..~ 
0.0 1.80261846 0.0 0.0 3.65619346 
0.2 I .80442580 -2,44450615e-3 1.81100734 3.81250009 
0.4 1.71572615 - 6.19434447e - 2 1.84010639 4.08075955 
0.6 7.1245641 le- I -7.09384401e- I 1.91593691 4.49320147 
0.8 - 5.38076252e+ 1 -2,68651238e+ I 2.0654062 I 5.06575119 
1.0 0.0 0.0 

(1 lc) 

Clearly, cZ = 0 because the temperature is bounded at 
Y = 0. Then equation (9) automatically satisfies the 
boundary condition at Y = 0 (equation (5~)) because 
the derivative of J,) is zero there. Now, we have five 
undetermined parameters (c,, s,, cl”, /I,, and Nu) and 
five conditions, which consist of two boundary con- 
ditions (equations (5b) and (Sd)), the energy con- 
servation (equation (7)) and two matching conditions 
for d(r) and qY(r) at r = c. 

When Pe + co, axial conduction can be neglected 
and s, = 2Nu from equation (7). Four parameters c,, 
LIZ”. b, and Nu,, for various values of c are presented in 
Table 1 and the variation of fully developed tem- 
perature profile with respect to c is shown in Fig. 1 
for this case. According to Kakac et al. [lo] and Kays 
and Crawford [l I], Bhatti [12] obtained fully 

Y 

1 

0.8 

0.6 

2.31612940 5.78318596 

developed temperature profile for a Newtonian fluid 
(c = 0) neglecting axial conduction (Pe + co). They 
presented the solution in the form of an infinite power 
series, which includes Bhatti’s wrong data, (I(, = 1. The 
right value should be a,, = 1 JO26 as shown in Table 1 
of the present paper. This can be readily verified from 
Fig. 1, by comparing the Graetz solutions of New- 
tonian flow [3, 41 for large x+. 

When Pe + 0, one can obtain an asymptotic solu- 
tion by the perturbation method similar to that used 
for Newtonian fluid by Pahor and Strand [2] and 
Michelsen and Villadsen [7]. The result can be written 
as 

(12) 
2 

J 
MJ,,(~, r)rdr 

0 

Nu(Pe) = Nu,, -C, Pr (13) 

where /j, = 2.4048255577 is the first zero of the Bessel 
function Jr,, Nu,, is a limiting value at Pe = 0 and C, 
is a constant, Figure 2 shows fully developed tem- 

i ___ present study 
0 Graetz sol. [3, 41 

for large x+ 

- - - - - Bhatti [12] 

Fig. 1. Variation of fully developed temperature profile with respect to c when PC + x. 
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4 
Variation of fully developed temperature profile with respect to c when Pe + 0. 

perature profiles represented by equation (12). From 
equations (5d) and (12), Nu,, can be obtained as 

Using the method of Churchill and Usagi [19], an 
explicit correlation formula between Nu and Pe can 
be written as 

Nu = Nu,-(Nu,-Nu,)*(l+(A, *Pe)A2)‘!A, (15) 

where A, and A, are obtained by the regression analy- 
sis. Parameters Nu,, A, and A, for various values of c 
are given in Table 2. 

Figure 3 shows the variation of Nu with respect to 
Pe for c = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. When c = 0 
(Newtonian fluid), the present exact solution shows 
good agreement with that of Ash and Heinbockel 
[5]. A relative error between the exact solution and 
prediction of Nu using a correlation formula (15) does 
not exceed 0.1%. It is also shown that the present 
correlation formula predicts the exact solution much 
better than that of Michelsen and Villadsen [7] for 
the entire range of Pe, who derived the correlation 
formula by using the perturbation methods both when 
Pe is very large and when Pe is very small. For larger 

Table 2. Parameters Nu,,, A, and A2 for various values of c 

c Nk A, A2 

0.0 4.18065498 0.31362065 - 1.66141012 
0.2 4.27501534 0.29957298 - 1.66123843 
0.4 4.44229997 0.27736639 - 1.66306874 
0.6 4.71804885 0.24787100 - 1.66891216 
0.8 5.14500676 0.21563880 -1.67724511 

c, the variation of NM with respect to Pe decreases, 
until for c = 1 Nu is completely independent of Pe. 

Figures 4(a)-(e) show the temperature profiles for 
c = 0,0.2,0.4,0.6 and 0.8, respectively. The variation 
of the temperature profiles with respect to Pe is again 
shown to be smaller for larger c. The temperature 
profile for c = 1 is not shown because it is the same 
as Figs 1 and 2 and does not vary with Pe. 

3. THERMALLY DEVELOPING FLOW- 

THE GRAETZ PROBLEM 

3.1. Governing equations 
The non-dimensionalized governing equation for 

the Graetz problem in laminar pipe flow including 
both axial conduction and viscous dissipation can be 
represented as 

+B~*Y/,,*@ (16) 

‘1 
eff = 1 + I Ql~c, r/,v (17) 

I dul drl 
c<r<l 

where the viscous dissipation, represented by rl,,.@,, 
is a known function because the velocity profile is 
again assumed to be fully developed (equation (2)) 
and @ = (du/ dr)‘. 

For uniform wall and inlet temperatures, the 
boundary conditions are written as 

O(r,O) = 1, (184 

@(I, x’) =o, g co (18b) 
r-0 
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Fig. 3. 
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Michelsen and Villadsen [7], c=O 
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Pe 
Variation of the Nusselt number with respect to the Peclet number for C’ = 0. 0.2. 0.4, 0.6. 0.8 and I 

lim O(r. _r+) = 0 I(r) 
I + -+ 7 

where 0, (r) is a solution of 

(18c) 3.2. Method ofsepurution of’ruriuhles 

We set the solution of equation (16) in the following 
form 

+ Br . qen. @ = 0 (19a) @Cr..\-+) = @.(r)+X(.-cYL)*R(r). (21) 

(19b) Substituting equation (21) into equation (16) gives 

The solution of equation (19) was obtained by Vradis 
et ul. [ 131 such that 

0, (r) = 

<B,.. (,-c4)-i+3)+,c ( > 
(,_;+;jl 

O<rdc, 

5 

(,_r”)_!+‘)_~,nr i 
cdr<l 

(20) 

;X.R = +R+ ‘XR’+XR” 
>’ I 

From equation (19a), equation (22) becomes 

R” 1 R’ u A” 
(23) 

In order that a solution may be obtained by the 
method of separation of variables. we set 
A”jX = -L(?. > 0), which assures that x”:‘X = 7.‘. 
Then. equation (23) is now written as 
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r 
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0.0 

Pe=O.OOl, 0.1, 0.2, 0.4, 
1.2,4,10,1000 

0 0.5 

; 

1.5 2 

(b) 

0 0.5 
: 

1.5 2 

(d) 

0 0.5 1.5 2 

(e) 

Fig. 4. Fully developed temperature profiles : (a) c = 0 ; (b) c = 0.2 ; (c) r = 0.4; (d) c = 0.6 ; (e) c = 0.8. 

*rR=O (244 O(r,x’) = O,(r)+ T C,R,(r)exp(-2,x’) (25) 
n= I 

R’(0) = 0 R(I) = 0. (24b) where 1, is an eigenvalue and R, is the corresponding 
eigenfunction. Since the axial conduction term, 

This constitutes an eigenvalue problem which is simi- (l/Pe2)d20/&c+‘. is retained in equation (16), the 
lar to the one studied earlier by Michelsen and mathematical problem (24a) and (24b) does not 
Villadsen [7]. reduce to a classical Sturm-Liouville system with a 

Thus, the solution of equation (16) can be rep- complete set of eigenfunctions orthonormal with 
resented as respect to a weighting function [20]. 
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Hence, we determine the coefficients C, approxi- 
mately by considering finite N eigenmodes (A,,, R,,(r)) 
adequate for a converged solution. The method of 
weighted residuals through which these finite N eig- 
enmodes are determined is explained in the next sub- 
section. Applying the boundary condition at the 
entrance, multiplying equation (25) by R,,, and inte- 
grating over 0 < Y < 1, we obtain 

2 C, j’ R,,R, dr = 
,,= I 0 

j’ R,,(l -O,)dr 
0 

m= I,2 ,..., N. (26) 

Solving the above set of N simultaneous equations 
(26), we can determine C,,. 

The dimensionless bulk temperature 0, and the 
local Nusselt number Nu are then determined as 

O,, = 2 
s 

’ u@rdr 
0 

’ uO,rdr+2,,$, $exp(--l.,\-+) 

Nu= -0”g 
??m ,=, 

(27) 

20’,,,=, 
= - ~ + & i D, exp( -3.,,x+) (28) 

0 m Inn-, 

where 

D, = -2C,,R;(l), E, = -2C, 
[s’ I 

rR,dr . 
0 

3.3. The method of weighted residuals. 
It is well known that the construction of an exact 

analytical solution to the eigenvalue problem of ther- 
mally developing flow is very difficult even in the case 
of negligible axial conduction. Although numerical 
solutions to the eigenvalue problem (24) are possible, 
higher modes of the system for large eigenvalues 
necessitate extensive computational effort, as Sellars 
et al. [I] reported. Therefore, in this paper, an approxi- 
mate solution to the eigenvalue problem (24) is 
obtained by the method of weighted residuals. 

We expand the eigenfunction R, in terms of some 
known functions Si(r) which satisfy the boundary con- 
ditions (equation (24b)) 

R, = 5 cy’S,(r), n = 1,2,...,N (29) 
/= I 

where c)“’ are undetermined coefficients. In the present 
study, we set S, = cos((2i- 1),‘2)nr. Integrating equa- 
tion (24a) multiplied by the weight function LV,, it can 
be written as 

‘(rRL).ll,dr+[“‘($ +i,z)rR,,n’,dr = 0 

(30) 

In the Galerkin method, ~1, = S, and equation (30) 
becomes (for more details, see Finlayson [21]). 

~~,(a,,+l:B,~+i,,c,,)ci”i = 0, n= 1,2,....N 

(31) 

where A,,, B,< and C,, are elements of matrices such 
that 

A,, = - 
1’ 

rS:w; dr (32a) 
0 

B,, = L 
s 

’ rS,w, dr 
Pe’ ,) 

(32b) 

c,, = 
i 

‘u 
- rS,w, dr. 

“2 
(324 

This can be turned into a 2N x 2N linear matrix prob- 
lem by adding an unknown eigenvector d 

i 

0 

-B-‘A _,‘L,)(;) = i(i) (33) 

where A = {A,,), B = {B,,) and C = {C,,}. Solving 
equation (33), we can obtain N real positive is and 
the corresponding eigenvectors. 

3.4. Results and discussion 
The method of the previous subsection is applied 

for Pe = 10, 100, 1000, with Br = 0, 0.1, 1, 2 and 
c = 0, 0.2, 0.4, 0.6, 0.8 over the range of 
0.001 d xi < 10. Thermally fully developed tem- 
perature profiles in Section 2 can be readily verified 
by comparing the thermally developing flow solutions 
obtained in this section for Br = 0 and large x+. The 
compared results are not presented here because they 
match very well and the differences are not discernible 
on figures. 

Figures 5(a) and (b) show the variation of the local 
Nusselt number at x+ = 0.001 for Pe = 10 with 
respect to the number of eigenmodes N when Br = 0 
and Br = 1, respectively. Johnston [17] reported that 
a larger N was needed with the decrease of Pe and x+, 
and with the increase of c. In the present method, 
however, the number N required to obtain a con- 
verged solution seems to be independent of c. At 
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Nu 

80.0 /-- 

60.0 F 

- c=o.o 
- c=o.2 
u c=o.4 
- c=O.6 
- c=O.8 

0 50 100 150 200 250 

N 

(a) Br=O 

I ” ” I ” ” I ” ” I ” "I' “‘I 

120.0 

Nu 

80.0 

60.0 
I 

- c=o.o 
+ c=o.4 - 
- c=O.6 - 

i 

(b) Bx=l 
Fig. 5. Variation of local Nusselt number at X+ = 0.001 for Pe = 10 with respect to N: (a) Br = 0; 

(b)Br== 1. 

X+ = 0.001, about 200 eigenmodes are required to be seen from these figures that the present results are 
obtain a converged solution, while only 2-30 eigen- in good agreement with previous results [16, 171. As 
modes are required for x+ > 0.1, with the con- expected, when Pe increases, the curves approach that 
vergence criterion of (Nu’“‘+’ - NuN)/NuN < 10-j. of infinite Pe reported by Blackwell [ 161 and Johnston 

Figures 6(a) and (b) show the local Nusselt number [17], who analyzed the problem by neglecting axial 
for c = 0 and the bulk temperature for c = 0.4, respec- conduction. Therefore, it can be concluded that the 
tively, neglecting viscous dissipation (Br = 0). It can effect of axial conduction on the bulk temperature can 
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~ Present study 

Nu and Johnston [17] 
for infinite Pe 

0.6 

%l 

(a> 

1 Pe=lOOO 

r 

c=O.4, Br=O 

- Present study 

0 Johnston [17] 

0 Blackwell [16] 
and Johnston [I 71 _ 
for infinite Pe 

w 
6. (a) Local Nusselt number with respect to axial distance for c = 0 (excluding viscous dissipation) ; 

(b) bulk temperature with respect to axial distance for c = 0.4 (excluding viscous dissipation). 

be neglected when Pe is larger than 100 (Fig. 6(b)), 
while the same argument can be made for the Nusselt 
number when Pe is larger than 500 (Fig. 6(a)). 

Figures 7(a) and (b) show the bulk temperature 
and the local Nusselt number for c = 0, respectively, 
including viscous dissipation. These results also show 
good agreement with previous results [8]. It can be 

clearly seen that the Nusselt number does not decrease 
monotonically and there is a minimum in the Nusselt 
number for Br = 0.1 (Fig. 7(b)). This results from 
the fact that for some values of Br the cooling effect 
dominates over the viscous heating effect in the nearer 
entrance region, while the viscous heating effect domi- 
nates over the cooling effect in the large Y+ region [9]. 
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16.0 

Nu 10.0 

8.0 

(W 
Fig. 7. (a) Bulk temperature with respect to axial distance for c = 0 ; (b) local Nusselt number with respect 

to axial distance for c = 0. 

The Nusselt number variation can be explained from nificantly decrease in that region. The Nusselt number 
the variation of the temperature gradient at the wall approaches the same value for all values of Br except 
and the local bulk temperature. Although the bulk for Br = 0 in the downstream region (x’ > 1) (Fig. 
temperature does not vary substantially with the 7(b)). 
increase of Br in the inlet region (Fig. 7(a)), the Nus- The variation of the local Nusselt number for 
selt number in that region considerably decreases (Fig. Br = 0, 0.1, 1,2 with respect to Pe and c are shown in 
7(b)). This shows that the temperature gradients sig- Fig. 8. For Br = 0, the local Nusselt number does 
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not vary significantly with respect to c (Fig. 8(a)). 
However, when viscous dissipation is included 
(Br # 0), the local Nusselt number is mainly affected 
by c for X+ > 0.01 (Figs 8(b)-(d)). 

4. CONCLUSION 

Thermally fully developed flow including axial con- 
duction as well as thermally developing flow (the Gra- 
etz problem) including both axial conduction and vis- 
cous dissipation for a Bingham plastic in a laminar 
pipe flow have been investigated analytically in the 
present paper. 

For thermally fully developed flow, temperature 
profiles were presented in a combined form of a Bessel 
function and an infinite power series, and the effects 
of the yield stress and the Peclet number on the Nusselt 
number were considered. It was found that the Nusselt 
number and the temperature profile for a Bingham 
plastic were affected insignificantly by the Peclet num- 
ber for larger yield stress. A correlation formula 
between the Nusselt number and the Peclet number 
was proposed, which predicted the Nusselt number 
very well for the entire range of the Peclet number. 

Analytical solution to the Graetz problem was 

obtained by the method of separation of variables, 
incorporating an approximate solution to the result- 
ant eigenvalue problem which was obtained by using 
the method of weighted residuals. The Nusselt number 
of a Bingham plastic was not affected significantly by 
the yield stress when viscous dissipation was excluded. 
However, the Nusselt number was significantly chan- 
ged by the yield stress with the inclusion of viscous 
dissipation. Therefore, in the case of a Bingham plas- 
tic, viscous dissipation plays a predominant role in 
determining the heat transfer characteristics of ther- 
mally developing flow. 
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